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Abstract
This paper presents DynaBot, a domain-specific web service

discovery system. The core idea of the DynaBot service discov-
ery system is to use domain-specific service class descriptions
powered by an intelligent Deep Web crawler. In contrast to
current registry-based service discovery systems – like the sev-
eral available UDDI registries – DynaBot promotes focused
crawling of the Deep Web of services and discovers candidate
services that are relevant to the domain of interest. It uses intel-
ligent filtering algorithms to match services found by focused
crawling with the domain-specific service class descriptions.
We demonstrate the capability of DynaBot through the BLAST
service discovery scenario and describe our initial experience
with DynaBot.

1 Introduction
With the increasing adoption of web services and the

Service-Oriented Computing paradigm [15], there is a grow-
ing need for efficient and effective mechanisms for web ser-
vice discovery. Web service discovery is critical in a num-
ber of contexts, from helping organizations deploy flexible,
re-configurable architectures to identifying appropriate service
partners and competitors, and so on.

Current web service discovery techniques typically rely on
registry-based discovery. In the registry-based approach, ser-
vices advertise their existence and capabilities with a service
registry like the ones offered by Microsoft [11] and IBM [9].
Interested users may discover relevant services by querying the
metadata maintained in the registry or by browsing the registry.
However, registry-based discovery systems have several draw-
backs. Many of these technologies are still evolving and have
limited deployment. In addition, registry-based discovery re-
lies on services correctly advertising themselves in a known
repository, effectively limiting the number of services that can
be discovered. Finally, the limited descriptive power in existing
registry standards implies that service analysis is still required
to ascertain a service’s capabilities.

With these challenges in mind, we present DYNABOT, a
domain-specific web service discovery system for effectively
identifying domain-specific web services. DYNABOT is a com-
plementary approach to traditional registry-based discovery.
The core idea of the Dynabot service discovery system is to use
domain-specific service class descriptions powered by an intel-
ligent Deep Web crawler. In contrast to current registry-based

∗This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory
under contract No. W-7405-ENG-48.

service discovery systems, Dynabot promotes focused crawling
of the Deep Web of services and discovers candidate services
that are relevant to the domain of interest. It uses intelligent
filtering algorithms to match services found by focused crawl-
ing with the domain-specific service class descriptions. The
major challenges facing DYNABOT are identification of poten-
tial web services, classifying the discovered services, managing
data generated throughout the classification process, and rank-
ing of both services and the results they produce. DYNABOT
uses its service class model with associated service class de-
scriptions to determine the capabilities of discovered services
and to classify web services as members of a service class.

In this paper, we demonstrate the capability of Dynabot
through the BLAST service discovery scenario. Our initial ex-
perimental results are very encouraging – demonstrating up to
73% success rates of service discovery and showing how the
incorporation of service clues into the search process may im-
prove service matching throughput. These results suggest an
opportunity for efficient service discovery in the face of the
large and growing number of web services. The DYNABOT
prototype has been successfully deployed by Lawrence Liver-
more National Laboratory for use in aiding bioinformatic ser-
vice discovery and integration, and its further development and
testing is continuing.

2 The Service Class Model
Research on DYNABOT for automatically discovering and

classifying web services is motivated by the need to fill the
gap between the growth rate of web services and the rate at
which current tools can interact with these services. Given a
domain of interest with defined operational interface semantics,
can we provide superior service identification, classification,
and integration services than the current state-of-the-art?

To facilitate the domain-specific discovery of web services,
we introduce the concept of service classes. We model a ser-
vice provider S as a provider of k services s1, ..., sk (k ≥ 1).
The service class model views the spectrum of web services as
a collection of service classes, which are services with related
functions.
Definition 1: A service class is a set of web services that pro-
vide similar functionality or data access.

The definition of the desired functionality for a service class
is specified in a service class description, which defines the rel-
evant elements of the service class without specifying instance-
specific details. The service class description articulates an ab-
stract interface and provides a reference for determining the
relevance of a particular service to a given service class. The
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service class description is initially composed by a user or ser-
vice developer and can be further revised via automated learn-
ing algorithms embedded in the DYNABOT service probing and
matching process.
Definition 2: A service class description (SCD) is an abstract
description of a service class that specifies the minimum func-
tionality that a service s must export in order to be classified as
a member of the service class. An SCD is modeled as a triple:
SCD =< T ,G,P >, where T denotes a set of type defini-
tions, G denotes a control flow graph, and P denotes a set of
probing templates.

The service class model supports the web service discovery
problem by providing a general description of the data or func-
tionality provided. A service class description encapsulates the
defining components that are common to all members of the
class and provides a mechanism for hiding insignificant differ-
ences between individual services, including interface discrep-
ancies that have little impact on the functionality of the service.
In addition, the service class description provides enough infor-
mation to differentiate between a set of arbitrary web services.

As a continuing example, consider the problem of locat-
ing members of the service class Nucleotide BLAST. Nu-
cleotide BLAST [Basic Local Alignment Search Tool] ser-
vices provide complex similarity search operators over mas-
sive genetic sequence databases. BLAST services are espe-
cially important to bioinformatics researchers. The relevant
input features in this service class are a string input for spec-
ifying genetic sequences, a choice of nucleotide databases to
search, and a mechanism for submitting the genetic sequence
query to the appropriate server. The relevant output is a set
of sequence matches. Note that this description says nothing
about the implementation details of any particular instance of
the service class; rather, it defines a minimum functionality set
needed to classify a service as a member of the Nucleotide
BLAST service class. SCDs may also be defined for
other user-specified classes like Keyword-Based Search
Engines, Stock Tickers, or Hotel Reservation
Services. The granularity of each SCD is subject to the user
needs.

Our initial prototype of the DYNABOT service discovery
system utilizes a service class description composed of three
building blocks: type definitions, a control pattern, and a set
of probing templates. The remainder of this section describes
each of these components with illustrative examples.

2.1 Type Definitions
The first component of a service class description specifies

the data types t ∈ T that are used by members of the ser-
vice class. Types are used to describe the input and output pa-
rameters of a service class and any data elements that may be
required during the course of interacting with a service. The
DYNABOT service discovery system includes a type system
that is modeled after the XML Schema [6] type system with
constructs for building atomic and complex types. This regu-
lar expression-based type system is useful for recognizing and

<type name="DNASequence"
type="string"
pattern="[GCATgcat-]+" />

<type name="AlignmentSequenceFragment" >
<element name="AlignmentName"

type="string"
pattern="[:alpha:]+:" />

<element type="whitespace" />
<element name="start-align-pos"

type="integer" />
<element type="whitespace" />
<element name="Sequence"

type="DNASequence" />
<element type="whitespace" />
<element name="end-align-pos"

type="integer" />
</type>

Figure 1: Nucleotide BLAST: type definitions.

extracting data elements that have a specific format with rec-
ognizable characteristics. Since DYNABOT is designed with a
modular, flexible architecture, the type system is a pluggable
component that can be replaced with an alternate implemen-
tation if such an implementation is more suitable to a specific
service class.

The regular expression type system provides two basic
types, atomic and complex. Atomic types are simple valued
data elements such as strings and integers. The type system
provides several built-in atomic types that can be used to create
user-defined types by restriction. Atomic types may be com-
posed into complex types.

The DNASequence type in Figure 1 is an example of an
atomic type defined by restriction in the nucleotide BLAST ser-
vice class description. Each type has a type name that must be
unique within the service class description. Atomic types in-
clude a base type specification (e.g. type="string") which
can reference a system-defined type or an atomic type defined
elsewhere in the service class description. The base type deter-
mines the characteristics of the type that can be further refined
with a regular expression pattern that restricts the range of val-
ues acceptable for the new type. More intricate types can be
defined using the complex type definition, which is composed
of a series of elements. Each element in a complex type can be
a reference to another atomic or complex type or the definition
of an atomic type. List definitions are also allowed using the
constraints minOccurs and maxOccurs, which define the
expected cardinality of a particular sub-element within a type.
The choice operator allows types to contain a set of possi-
ble sub-elements from which one will match. Figure 1 shows
the declaration for a complex type that recognizes a nucleotide
BLAST result alignment sequence fragment, which is a string
similar to Query: 280 TGGCAGGCGTCCT 292

The above string in a BLAST result would be recognized
as an AlignmentSequenceFragment by the type recog-
nition system during service analysis.
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Figure 2: Nucleotide BLAST: control flow graph.

2.2 Control Flow Graph
Due to the complexity of current services, we model the

underlying control flow of the service with a control flow
graph. In the BLAST scenario, each request to the server may
have multiple possible response types depending on the current
server and data availability, as well as the user permissions. For
example, a query that results in a list of genetic sequences un-
der normal load conditions may result in a completely different
Unavailable response, or, perhaps, an intermediate Wait
30 Seconds response until the list of resulting genetic se-
quences is returned. By defining a control flow graph to cap-
ture these different scenarios, we can help guide the choice of
the appropriate semantic analyzer for use on each response.

A service class description’s control flow graph is a directed
graph G = (E, V ), consisting of a set of state nodes V con-
nected by directed edges e ∈ E. The state nodes in the graph
represent control points that correspond to pages expected to
be encountered while interacting with the service. Each state
s ∈ V has an associated type t ∈ T . The directed edges de-
pict the possible transition paths between the control states that
reflect the expected navigational paths used by members of the
service class.

Data from a web service is compared against the type as-
sociated with the control flow states to determine the flow of
execution of a service from one state to another. Control pro-
ceeds from a start state through any intermediate states until a
terminal (result) state is reached. The control flow graph de-
fines the expected information flow for a service and gives the
automated service analyzer, described in Section 3.2, a frame
of reference for comparing the responses of the candidate ser-
vice with the expected results for a member of the service class.
In order to declare a candidate service a match for the service
class description, the service analyzer must be able to produce
a set of valid state transitions in the candidate service that cor-
respond to a path to a terminal state in the control flow graph.

Returning to our continuing example, Figure 2 provides
an illustration of a service class control flow graph for a
Nucleotide BLAST web service. The control flow graph
has four state nodes that consist of a state label and a data
type. The control flow graph has a single start state that defines
the input type a class member must contain. To be considered
a candidate Nucleotide BLAST service, the service must

<example>
<arguments>

<argument required="true">
<name>sequence</name>
<type>DNASequence</type>
<hints>

<hint>sequence</hint>
<inputType>text</inputType>

</hints>
<value>TTGCCTCACATTGTCACTGCAAAT

CGACACCTATTAATGGGTCTCACC
</value>

</argument>
</arguments>
<result type="SummaryPage" />

</example>

Figure 3: Nucleotide BLAST: probing template.

produce either a single transition to a results summary state (as
is highlighted in Figure 2) or a series of transitions through in-
direction states before reaching the summary state. This last
point is critical – many web services go beyond simple query-
response control flow to include complex control flow. In the
case of Nucleotide BLAST, many services produce a se-
ries of intermediate results as the lengthy search is performed.

DYNABOT uses the service class description control flow
graph to determine that a candidate is a member of a particu-
lar service class and to guide the choice of semantic analyzer
for finer-grained analysis. So, when DYNABOT encounters
a Protein BLAST service that resembles a Nucleotide
BLAST service in both interface and the form of the results but
differs in control flow, it will use the control flow analysis to
appropriately catalog the service as a Protein BLAST ser-
vice and then invoke domain-specific semantic analyzers.

2.3 Probing Templates

The third component of the service class description is the
set of probing templates P , each of which contains a set of in-
put arguments that can be used to match a candidate service
against the service class description and determine if it is an
instance of the service class. Probing templates are composed
of a series of arguments and a single result type. The argu-
ments are used as input to a candidate service’s forms while
the result type specifies the data type of the expected result.
Figure 3 shows an example probing template used in a service
class description. The probing template example shows an in-
put argument and a result type specification; multiple input
arguments are also allowed. The attribute required states
whether an argument is a required input for all members of
the service class. In our running example, all members of the
Nucleotide BLAST service class are required to accept a
DNA sequence as input. The argument lists the type of the in-
put as well as a value that is used during classification. The
optional hints section of the argument supplies clues to the
service classifier that help select the most appropriate input pa-
rameters on a web service to match an argument. Finally, the
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output result specifies the response type expected from the ser-
vice. All the types referenced by a probing template must have
type definitions defined in the type section of the SCD.

The argument hints specify the expected input parameter
type for the argument and a list of likely form parameter names
the argument might match. Multiple name hints are allowed,
and each hint is treated as a regular expression to be matched
against the form parameters. These hints are written by domain
experts using their observations of typical members of the ser-
vice class. For example, a DNA sequence is almost always
entered into a text input parameter, usually with “sequence” in
its name. The DNA Sequence argument in a Nucleotide
BLAST service class therefore includes a name hint of “se-
quence” and an input hint of “text.”

3 DYNABOT Design
The problem of discovering and analyzing web services

consists of locating potential services and determining their
service interface and capabilities. The current approach
to service discovery is to query or browse a known ser-
vice registry, such as the emerging UDDI directory stan-
dard [http://www.uddi.org/]. However, registry-based discov-
ery systems have several drawbacks as discussed in the Intro-
duction. In contrast, DYNABOT relies on a complementary ap-
proach that relies on domain-specific service class descriptions
powered by an intelligent Deep Web crawler. This approach
is widely applicable to the existing Web, removes the burden
of registration from service providers, and can be extended to
exploit service registries to aid service discovery.

3.1 Architecture
The first component of DYNABOT is its service crawler,

a modular web crawling platform designed to discover those
web services relevant to a service class of interest. The dis-
covery is performed through a service class description-based
service location and service analysis process. The DYNABOT
service crawler starts its discovery process through a combina-
tion of visiting a set of given UDDI registries and a robot-based
crawling of the Deep Service Web. By seeding a crawl with
several existing UDDI registries, DYNABOT may identify can-
didate services that match a particular user-specified service
class description. These matching services need not be pre-
labeled by the registry; the DYNABOT semantic analyzers will
determine the appropriate classification based on the provided
service class descriptions.

By expanding the discovery space through focused crawling
of the Deep Web of services, DYNABOT may discover valuable
services that are either not represented in current registries or
are overlooked by current registry discovery tools. Recent esti-
mates place the practical size of the Deep Web of web-enabled
services at over 300,000 sites offering 1.2 million unique ser-
vices, with the number of sites more than quadrupling between
2000 and 2004 [5]. Deep Web services provide query capabil-
ity that ranges from simple keyword search to complex forms
with multiple options.

Search form 
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Figure 4: DYNABOT Service Analyzer

DYNABOT utilizes an advanced crawler architecture that in-
cludes standard crawler components like a URL frontier man-
ager [8], network interaction modules, global storage and as-
sociated data managers, and document processors, as well as a
DYNABOT-specific service analyzer, which analyzes the can-
didate services discovered through focused crawling and deter-
mines if a service is related to a particular domain of interest
by matching it with the given SCD, such as the Nucleotide
BLAST service class description.

3.2 Service Analyzer
The process of web service discovery begins with the con-

struction of the service class description, which directs the
probing operations used by the service analyzer to determine
the relevance of a candidate service. The service analyzer con-
sists of a form filter and analyzer, an extension mechanism, a
query generator, a query prober, and a response matcher.

Overview. When the processor encounters a new service
site to test, its first task is to invoke the form filter, which
ensures that the candidate service has a form interface (Fig-
ure 4(1)). The second step (2) is to extract the set of forms
from the page, load the service class description, and load any
auxiliary modules specified by the service class description (3).
The query generator (4) produces a set of query probes which
are fed to the query probing module (5). Responses to the query
probes are analyzed by the response matcher (6). If the query
response matches the expected result from the service class de-
scription, the service has matched the service class description
and a source capability profile (7) is produced as the output
of the analysis process. The profile contains the specific steps
needed to successfully query the web service. If the probe was
unsuccessful, additional probing queries can be attempted.

Definitions. The process of analyzing a service begins when
the crawler passes a potential URL for evaluation to the service
analysis processing module. A service provider S consists of
an initial set of forms F , each of which corresponds to a can-
didate service s. Each form f ∈ F, f = (P, B) is composed
of a set of parameters p ∈ P, p = (t, i, v) where t is the type
of the parameter, such as checkbox or list, i is the parameter’s
identifier, and v is the value of the parameter. The form also
contains a set of buttons b ∈ B which trigger form actions such
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as sending information to the server or clearing the form.
The process of query probing involves manipulating a ser-

vice provider’s forms to ascertain their purpose with the ulti-
mate goal of determining the function of the service itself. Al-
though the expected inputs and purpose of each of the various
parameters and forms is usually intuitive to a human operator,
an automated computer system cannot rely on human intuition
and must determine the identity and function of the service
provider’s forms algorithmically. The query probing compo-
nent of the DYNABOT service analyzer performs this function.
Our query prober uses induction-based reasoning with exam-
ples: the set of examples e ∈ E is defined as part of the service
class description. Each example e includes a set of arguments
a ∈ A, a = (r, t, v), where r indicates if the example parame-
ter is required or optional, t is the type of the parameter, and v
is the parameter’s value.

Form Filter and Analyzer. The form filter processing step
helps to reduce the service search space by eliminating any can-
didate service that cannot possibly match the current service
class description. In the filtration step, shown in step 1 of Fig-
ure 4, the form filter eliminates any service provider S from
consideration if the its form set is empty, that is F = ∅. In
form analysis, shown in step 2, the service class description
will be compared with the service provider, allowing the ser-
vice analyzer to eliminate any forms that are incompatible with
the service class description.

Module Selection. The modular design of the service class
description framework and the DYNABOT discovery and anal-
ysis system allows many of the system components to be ex-
tended or replaced with expansion modules. For example, a
service class description may reference an alternate type sys-
tem or a different querying strategy than the included versions.
Step 3 in the service analysis process resolves any external ref-
erences that may be defined in the service class description or
configuration files and loads the appropriate code components.

Query Generation. The heart of the service analysis pro-
cess is the query generation, probing, and matching loop shown
in steps 4, 5, and 6 of Figure 4. Generating high quality queries
is a critical component of the service analysis process, as low-
quality queries will result in incorrect classifications and in-
creased processing overhead. DYNABOT’s query generation
component is directed by the service class description to ensure
relevance of the queries to the service class. Queries are pro-
duced by matching the probing templates from the service class
description with the form parameters in the service provider’s
forms; Figure 3 shows a fragment of the probing template for
the Nucleotide BLAST service class description.

Probing and Matching. Once the queries have been gener-
ated, the service analyzer proceeds by selecting a query, send-
ing it to the target service, and checking the response against
the result type specified in the service class description. This
process is repeated until a successful match is made or the set
of query probes is exhausted. On a match, the service ana-
lyzer produces a source capability profile of the target service,

including the steps needed to produce a successful query.
Our prototype implementation includes invalid query filter-

ing and some heuristic optimizations that are omitted from
the algorithm presented here for clarity’s sake. These opti-
mizations utilize the hints specified in the probing template
section of the service class description to match probing ar-
guments with the most likely candidate form parameter. For
instance, the Nucleotide BLAST service class description
specifies that form parameters named “sequence” that accept
text input are very likely to be the appropriate parameter for
the DNASequence probe argument. These hints are static and
must be selected by the service class description author; our on-
going research includes a study of the effectiveness of learning
techniques for matching template arguments to the correct pa-
rameters. We expect that the system should be able to deduce a
set of analysis hints from successfully matched services which
can then be used to enhance the query selection process.

4 Experimental Results
We have developed an initial set of experiments based on the

DYNABOT prototype service discovery system to test the valid-
ity of our approach. The experiments were designed to test the
accuracy and efficiency of DYNABOT and the service probing
and matching techniques. We have divided our tests into three
experiments. The first experiment is designed to test only the
probing and matching components of the crawler without the
confounding influence of an actual web crawl. Experiment 2
tests the performance of the entire DYNABOT system by per-
forming a web crawl and analyzing the potential services it en-
counters. Experiment 3 shows the effectiveness of pruning the
search space of possible services by comparing an undirected
crawler with one using a more focused methodology.

The DYNABOT prototype is implemented in Java and can
examine a set of supplied URLs or crawl the Web looking for
services matching a supplied service class description. All ex-
periments were executed on a Sun Enterprise 420R server with
four 450 MHz UltraSPARC-II processors and 4 GB memory.
The server runs SunOS 5.8 and the Solaris Java VM 1.4.1.

Crawler Configuration. The DYNABOT configuration for
these experiments utilized several modular components to vary
the conditions for each test. All of the configurations used the
same network interaction subsystem, in which domain name
resolution, document retrieval, and form submission are han-
dled by the HttpUnit user agent library [7]. The experiments
utilized the service analyzer document processing module for
service probing and matching. Service analysis employed the
same static service class description in all the tests, fragments
of which have been shown in Figures 1 and 3. All of the
configurations also included the trace generator module which
records statistics about the crawl, including URL retrieval or-
der, server response codes, document download time, and con-
tent length. 32 crawling threads were used in each run.

We utilized two configuration variations in these experi-
ments: the trace configuration and the random walk configu-
ration. The trace configuration is designed to follow a prede-
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Table 1: Services classified using the Nucleotide BLAST SCD

Crawl Statistics
Number of BLAST services analyzed 74
Total number of forms 79
Total number of form parameters 913
Total of forms submitted 1456
Maximum submissions per form 60
Average submissions per form 18.43
Number of matched services 53
Success rate 72.97%

Aggregate Probe Times
Minimum probe time 3 ms
Minimum fail time (post FormFilter) 189 s
Maximum fail time (post FormFilter) 11823 s
Average fail time (post FormFilter) 2807 s
Minimum match time (post FormFilter) 2.3 s
Maximum match time (post FormFilter) 2713 s
Average match time (post FormFilter) 284 s

termined path across the Web and utilizes the trace URL fron-
tier implementation to achieve this goal. This frontier accepts
a seed list in which any URLs found are crawled in the order
that they appear in the list. These seed lists can be either hand
generated or generated from previous crawls using the trace
generator. In the trace configuration, no URLs can be added to
the frontier and no attempt is made to prevent the crawler from
retrieving the same URL multiple times.

The random walk configuration mimics more traditional
web crawlers but attempts to minimize the load directed at any
one server. In this configuration, the link extractor module was
employed to extract hyperlinks from retrieved documents and
insert them into the URL frontier. The random walk frontier
implementation uses an in-memory data structure to hold the
list of URLs that have yet to be crawled, from which it selects
one at random when a new URL is requested. This configu-
ration also includes a visited list, which stores hash codes of
URLs that have been visited which the crawler can check to
avoid reacquiring documents that have already been seen.

4.1 Experiment 1: BLAST Classification

The first experiment tested the service analyzer processing
module only and demonstrates its effectiveness quantitatively,
providing a benchmark for analyzing the results of our subse-
quent experiments. In order to test the service analyzer, the
crawler was configured to utilize the trace frontier with a hand-
selected seed list.

The data for this experiment consists of 74 URLs that pro-
vide a nucleotide BLAST gene database search interface; this
collection of URLs was gathered from the results of several
manual web searches. The sites vary widely in complexity:
some have forms with fewer than 5 input parameters, while
others have many form parameters that allow minute control
over many of the options of the BLAST algorithm. Some of
the services include an intermediate step, called an indirection,

Table 2: Experiment 1 probing statistics.

Number of
probes Freq
0 12
1–10 46
11–20 1
21–30 2
31–40 2
41–50 1
51–60 10

Probe
time (s) Freq
<0.5 3
0.5–1 1
1–5 11
5–10 5
10–50 10
50–100 2
100–500 31
>500 11

in the query submission process. A significant minority of the
services use JavaScript to validate user input or modify param-
eters based on other choices in the form. Despite the wide va-
riety of styles found in these services, the DYNABOT service
analyzer is able to recognize a large number of the sites using
a Nucleotide BLAST SCD of approximately 150 lines.

Tables 1 and 2 show the results of Experiment 1. Sites listed
as successes are those that can be correctly queried by the ana-
lyzer to produce an appropriate result, either a set of alignments
or an empty BLAST result. An empty result indicates that the
site was queried correctly but did not contain any results for
the input query used. Since all of the URLs in this experiment
were manually verified to be operational members of the ser-
vice class, a perfect classifier would achieved a success rate of
100%; Table 1 demonstrates that the DYNABOT service ana-
lyzer achieves an overall success rate of 73%.

There are several other notable results in the data presented
in Tables 1 and 2. The relatively low number of forms per
service—79 forms for 74 services—indicates that most of these
services use single-form entry pages. However, the average
number of parameters per form is over 11 (913 parameters /
79 forms = 11.56), indicating that these forms are fairly com-
plex. We are currently exploring form complexity analysis and
comparison to determine the extent to which the structure of a
service’s forms can be used to estimate the likelihood that the
service matches a service class description.

Form complexity directly impacts the query probing com-
ponent of the service analyzer, including the time and number
of queries needed to recognize a service. To grasp the scal-
ing problem with respect to the number of form parameters
and the complexity of the service class description, consider
a web service with a single form f containing 20 parameters,
that is |P | = 20. Further suppose that the service class descrip-
tion being used to analyze the service contains a single probing
template with two arguments, |A| = 2, and that all of the argu-
ments are required. The number of combinations of arguments
with parameters is then

(|P |
|A|

)

=
(

20

2

)

= 190, a large but perhaps
manageable number of queries to send to a service. The num-
ber of combinations quickly increases as more example argu-
ments are added, however: with a three-argument example the
number of combinations is 1140, four arguments yields 4845,
and five arguments yields 15,504 potential combinations.

Despite the scalability concerns, Table 2 demonstrates the
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Table 3: Results from 6/2/2004 crawl, random walk frontier.

Crawl Statistics
Number of URLs crawled 1349
Number of sites with forms 467
Total number of forms 686
Total number of form parameters 2837
Total of forms submitted 4032
Maximum submissions per form 10
Average submissions per form 5.88
Number of matched services 2
Response Freq Content Type Freq
200 1212 text/html 1238
30x 114 application/pdf 36
404 18 text/plain 23
50x 6 other 52

effectiveness of the SCD-directed probing strategy: most of the
services were classified with less than 10 probes (58) in less
than 500 seconds (63). This indicates the effectiveness of the
static optimizations employed by the service analyzer such as
the probing template hints. Our ongoing research includes an
investigation of the use of learning techniques and more sophis-
ticated query scoring and ranking to reduce these requirements
further and improve the service analyzer efficiency.

Failed sites (27%) are all false negatives that fall into two
categories: indirection services and processing failures. An in-
direction service is one that interposes some form of interme-
diate step between entering the query and receiving the result
summary. For example, NCBI’s [14] BLAST server contains a
formatting page after the query entry page that allows a user to
tune the results of their query. Simpler indirection mechanisms
include intermediate pages that contain hyperlinks to the re-
sults. We do not consider server-side or client-side redirection
to fall into this category as these mechanisms are standardized
and are handled automatically by web user agents. Recogniz-
ing and moving past indirection pages presents several interest-
ing challenges because of their free-form nature. Incorporating
a general solution to complex, multi-step services is part of our
ongoing work [13].

Processing errors indicate problems emulating the behavior
of standard web browsers. For example, some web design id-
ioms, such as providing results in a new window or multi-frame
interfaces, are not yet handled by the prototype. Support for
sites that employ JavaScript is also incomplete. We are work-
ing to make our implementation more compliant with standard
web browser behavior. The main challenge in dealing with pro-
cessing failures is accounting for them in a way that is generic
and does not unnecessarily tie site analysis to the implementa-
tion details of particular services.

4.2 Experiment 2: BLAST Crawl
Our second experiment tested the performance characteris-

tics of the entire DYNABOT crawling, probing, and matching
system. The main purpose of this experiment is to demon-
strate the need for a directed approach to service discov-

Table 4: Results from 6/2/2004 crawl, Google 500 BLAST seed.
Random LinkHint

Crawl Statistics Walk “blast”
Number of URLs crawled 174 182
Number of sites with forms 74 71
Total number of forms 108 137
Total number of form parameters 348 1038
Total of forms submitted 2996 3340
Maximum submissions per form 60 60
Average submissions per form 27.74 24.38
Number of matched services 0 12

ery. Intuitively, the problem stems from the characteristics of
web services: instances of a particular service class, such as
Nucleotide BLAST, will make up a small fraction of the
available services related to the relevant domain, e.g. bioinfor-
matics. Likewise, the services belonging to any particular do-
main will constitute a small portion of the complete Web. Ex-
periment 2 supports this conjecture and demonstrates the need
for intelligent service discovery and resource allocation. An
effective service discovery mechanism must use its resources
wisely by spending available processing power on services that
are more likely to belong to the target set.

The results of this experiment are presented in Table 3. For
this test, the crawler was configured utilizing the random walk
URL frontier with link extraction and service analysis. The
initial seed for the frontier was the URLs contained in the first
100 results returned by Google for the search “bioinformatics
BLAST.” URLs were returned from the frontier at random and
all retrieved pages had their links inserted into the frontier be-
fore the next document was retrieved. These results are not
representative of the Web as a whole, but rather provide insight
into the characteristics of the environment encountered by the
DYNABOT crawler during a domain-focused crawl. The most
important feature of these results is the relatively small num-
ber of matched services: despite the high relevance of the seed
and subsequently discovered URLs to the search domain, only
a small fraction of the services encountered matched the ser-
vice class description. The results from Experiment 1 demon-
strate that the success rate of the service analyzer is very high,
leading us to believe that the Nucleotide BLAST services
make up only a small percentage of the bioinformatics sites
on the Web. This discovery does not run counter to our intu-
ition; rather, it suggests that successful and efficient discovery
of domain-related services hinges on the ability of the discov-
ery agent to reduce the search space by pruning out candidates
that are unlikely to match the service class description.

4.3 Experiment 3: Directed Discovery
Given the small number of relevant web services related

to our service class description, Experiment 3 further demon-
strates the effectiveness of pruning the discovery search space
to find high quality candidates for probing and matching. One
important mechanism for document pruning is the ability to
recognize documents and links that are relevant or point to rele-
vant services before invoking the expensive probing and match-
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ing algorithms. Using the random walk crawler configuration
as a control, this experiment tests the effectiveness of using
link hints to guide the crawler toward more relevant services.
The link hint frontier is a priority-based depth-first exploration
mechanism in which hyperlinks that match the frontier’s hint
list are explored before nonmatching URLs. For this experi-
ment, we employed a static hint list using a simple string con-
tainment test for the keyword “blast” in the URL.

Table 4 presents the results. The seed lists for the URL
frontiers in this experiment were similar to those used in Ex-
periment 2 except that 500 Google results were retrieved and
all the Google cache links were removed. The link hint fo-
cused crawler discovered and matched 12 services with a fewer
number of trials per form than its random walk counterpart.
Although the number of URLs crawled in the both tests was
roughly equivalent, the link hint crawler found services of
much higher complexity as indicated by the total number of
form parameters found: 1038 for the link hint crawler versus
348 for the random walk crawler.

The results of Experiment 3 suggest a simple mechanism
for selecting links from the URL frontier to move the crawler
toward high quality candidate services quickly: given a hint
word, say “blast,” first evaluate all URLs that contain the hint
word, proceeding to evaluate URLs that do not contain the hint
word only after the others have been exhausted. Since the hint
list is static and must be selected manually, we are studying
the effectiveness of learning algorithms and URL ranking al-
gorithms for URL selection. This URL selection system would
utilize a feedback loop in which the “words” contained in
URLs would be used to prioritize the extraction of URLs from
the frontier. Words contained in URLs that produced service
class matches would increase the priority of any URLs in the
frontier that contained those words, while words that appeared
in nonmatching URLs would likewise decrease their priority.
This learning mechanism would also need a word discrimina-
tion component (such as TFIDF) so that common words like
“http” would have little effect on the URL scoring.

5 Related Work
Researchers have previously explored different aspects of

the service discovery problem, ranging from personalized dis-
covery [3], to discovery in a federated environment [18], to
identifying services that meet certain quality-of-service guar-
antees [10], to evaluating services based on a distributed repu-
tation metric [19], to other quality metrics like in [21].

Web crawlers have generated considerable commercial and
research interest [1, 12, 8, 2]. There is active research into
topic-driven or focused crawlers [4] which crawl the Web look-
ing for sites relevant to a particular topic; Srinivasan et al. [20]
present such a crawler for biomedical services that includes a
treatment of related systems. A previous effort to crawl the
“Hidden” Web suggested using domain-specific vocabularies
for filling out web forms [16]. In previous work, we have dis-
cussed some of the principles underlying DYNABOT [17].

6 Conclusion
We have presented DYNABOT, a domain-specific web

service discovery system for effectively identifying domain-
specific web services. The core idea of the DynaBot service
discovery system is to use domain-specific service class de-
scriptions powered by an intelligent Deep Web crawler. In con-
trast to current registry-based service discovery systems, Dyn-
aBot promotes focused crawling of the Deep Web of services
and discovers candidate services that are relevant to the domain
of interest. It uses intelligent filtering algorithms to match ser-
vices found by focused crawling with the domain-specific ser-
vice class descriptions. We have demonstrated the capability of
DynaBot through the BLAST service discovery scenario. Our
initial experimental results are very encouraging – demonstrat-
ing up to 73% success rates of service discovery and showing
how the incorporation of service clues into the search process
may improve service matching throughput. These results sug-
gest an opportunity for efficient service discovery in the face of
the large and growing number of web services.
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